Sunday 5 February 2017

Demand Prognose Gleitender Durchschnitt Methode Beispiel

OR-Notes sind eine Reihe von einleitenden Bemerkungen zu Themen, die unter die breite Überschrift des Bereichs Operations Research (OR) fallen. Sie wurden ursprünglich von mir in einer einleitenden ODER-Kurs Ich gebe am Imperial College verwendet. Sie stehen nun für alle Studenten und Lehrer zur Verfügung, die an den folgenden Bedingungen interessiert sind. Eine vollständige Liste der Themen in OR-Notes finden Sie hier. Prognosebeispiel Prognosebeispiel 1996 UG-Prüfung Die Nachfrage nach einem Produkt in den letzten fünf Monaten ist nachfolgend dargestellt. Verwenden Sie einen zweimonatigen gleitenden Durchschnitt, um eine Prognose für die Nachfrage in Monat 6 zu generieren. Wenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,9 an, um eine Prognose für die Nachfrage nach Nachfrage im Monat 6 zu generieren. Welche dieser beiden Prognosen bevorzugen Sie und warumDie zwei Monate in Bewegung Durchschnitt für die Monate zwei bis fünf ist gegeben durch: Die Prognose für den sechsten Monat ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für den Monat 5 m 5 2350. Beim Anwenden einer exponentiellen Glättung mit einer Glättungskonstante von 0,9 erhalten wir: Wie zuvor Die Prognose für Monat sechs ist nur der Durchschnitt für Monat 5 M 5 2386 Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir für den gleitenden Durchschnitt MSD (15 - 19) sup2 (18 - 23) sup2 (21 - 24) sup23 16,67 und für den exponentiell geglätteten Durchschnitt mit einer Glättungskonstante von 0,9 MSD (13 - 17) sup2 (16,60 - 19) sup2 (18,76 - 23) sup2 (22,58 - 24) sup24 10,44 Insgesamt sehen wir, dass die exponentielle Glättung die besten Prognosen für einen Monat liefert, da sie eine niedrigere MSD aufweist. Daher bevorzugen wir die Prognose von 2386, die durch exponentielle Glättung erzeugt wurde. Prognosebeispiel 1994 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage nach einem neuen Aftershave in einem Geschäft für die letzten 7 Monate. Berechnen Sie einen zweimonatigen gleitenden Durchschnitt für die Monate zwei bis sieben. Was würden Sie Ihre Prognose für die Nachfrage in Monat acht Bewerben exponentielle Glättung mit einer Glättungskonstante von 0,1, um eine Prognose für die Nachfrage in Monat acht abzuleiten. Welche der beiden Prognosen für den Monat acht bevorzugen Sie und warum Der Ladenbesitzer glaubt, dass Kunden auf diese neue Aftershave von anderen Marken umschalten. Erläutern Sie, wie Sie dieses Schaltverhalten modellieren und die Daten anzeigen können, die Sie benötigen, um zu bestätigen, ob diese Umschaltung stattfindet oder nicht. Der zweimonatige Gleitender Durchschnitt für die Monate zwei bis sieben ist gegeben durch: Die Prognose für Monat acht ist nur der gleitende Durchschnitt für den Monat davor, dh der gleitende Durchschnitt für Monat 7 m 7 46. Anwendung exponentieller Glättung mit einer Glättungskonstante von 0,1 wir Erhalten: Wie vorher ist die Prognose für Monat acht gerade der Durchschnitt für Monat 7 M 7 31.11 31 (da wir keine gebrochene Nachfrage haben können). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,1 Insgesamt sehen wir, dass die zwei Monate gleitenden Durchschnitt scheinen die besten einen Monat prognostiziert, da es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die zwei Monate gleitenden Durchschnitt produziert wurde. Um das Switching zu untersuchen, müssten wir ein Markov-Prozeßmodell verwenden, bei dem die Zustandsmarken verwendet werden, und wir müssten anfängliche Zustandsinformationen und Kundenvermittlungswahrscheinlichkeiten (von Umfragen) benötigen. Wir müssten das Modell auf historischen Daten laufen lassen, um zu sehen, ob wir zwischen dem Modell und dem historischen Verhalten passen. Prognosebeispiel 1992 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Rasierklinge in einem Geschäft für die letzten neun Monate. Berechnen Sie einen dreimonatigen gleitenden Durchschnitt für die Monate drei bis neun. Was wäre Ihre Prognose für die Nachfrage in Monat 10 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,3, um eine Prognose für die Nachfrage in Monat zehn ableiten. Welche der beiden Prognosen für Monat zehn bevorzugen Sie und warum Der dreimonatige gleitende Durchschnitt für die Monate 3 bis 9 ist gegeben durch: Die Prognose für Monat 10 ist nur der gleitende Durchschnitt für den Monat davor, dass heißt der gleitende Durchschnitt für Monat 9 m 9 20.33. Die Prognose für den Monat 10 ist daher 20. Die Anwendung der exponentiellen Glättung mit einer Glättungskonstante von 0,3 ergibt sich wie folgt: Nach wie vor ist die Prognose für Monat 10 nur der Durchschnitt für Monat 9 M 9 18,57 19 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,3 Insgesamt sehen wir, dass der dreimonatige gleitende Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 20, die durch die drei Monate gleitenden Durchschnitt produziert wurde. Prognosebeispiel 1991 UG-Prüfung Die nachstehende Tabelle zeigt die Nachfrage nach einer bestimmten Marke von Faxgeräten in einem Kaufhaus in den letzten zwölf Monaten. Berechnen Sie die vier Monate gleitenden Durchschnitt für die Monate 4 bis 12. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,2, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für Monat 13 lieber und warum Welche anderen Faktoren, die in den obigen Berechnungen nicht berücksichtigt werden, können die Nachfrage nach dem Faxgerät im Monat 13 beeinflussen. Der viermonatige Gleitende Durchschnitt für die Monate 4 bis 12 ist gegeben durch: m 4 (23 19 15 12) 4 17,25 m 5 (27 23 19 15) 4 21 m 6 (30 27 23 19) 4 24,75 m 7 (32 30 27 23) 4 28 m 8 (33 32 30 27) 4 30,5 m 9 (37 33 32 30) 4 33 m 10 (41 37 33 32) 4 35,75 m 11 (49 41 37 33) 4 40 m 12 (58 49 41 37) 4 46,25 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für den Monat zuvor, dh der gleitende Durchschnitt Für den Monat 12 m 12 46,25. Die Prognose für den Monat 13 ist also 46. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,2 anwenden, erhalten wir: Wie vorher ist die Prognose für den Monat 13 nur der Durchschnitt für den Monat 12 M 12 38,618 39 (wie wir Kann nicht gebrochene Nachfrage). Um die beiden Prognosen zu vergleichen, berechnen wir die mittlere quadratische Abweichung (MSD). Wenn wir dies tun, finden wir, dass für den gleitenden Durchschnitt und für die exponentiell geglättete Durchschnitt mit einer Glättungskonstante von 0,2 Insgesamt sehen wir, dass die vier Monate gleitenden Durchschnitt scheint die besten einen Monat voraus Prognosen geben, wie es eine niedrigere MSD hat. Daher bevorzugen wir die Prognose von 46, die durch die vier Monate gleitenden Durchschnitt produziert wurde. Saisonale Nachfrage Werbung Preisänderungen, sowohl diese Marke und andere Marken allgemeine wirtschaftliche Situation neue Technologie Prognosebeispiel 1989 UG-Prüfung Die folgende Tabelle zeigt die Nachfrage für eine bestimmte Marke von Mikrowellenherd in einem Kaufhaus in jedem der letzten zwölf Monate. Berechnen Sie für jeden Monat einen Sechsmonatsdurchschnitt. Was wäre Ihre Prognose für die Nachfrage in Monat 13 Verwenden Sie exponentielle Glättung mit einer Glättungskonstante von 0,7, um eine Prognose für die Nachfrage in Monat 13 ableiten. Welche der beiden Prognosen für den Monat 13 bevorzugen Sie und warum Jetzt können wir nicht berechnen, ein sechs Monat, bis wir mindestens 6 Beobachtungen haben - dh wir können nur einen solchen Durchschnitt ab dem 6. Monat berechnen. Daher haben wir: m 6 (34 32 30 29 31 27) 6 30,50 m 7 (36 34 32 30 29 31) 6 32,00 m 8 (35 36 34 32 30 29) 6 32,67 m 9 (37 35 36 34 32 30) 6 34,00 m 10 (39 37 35 36 34 32) 6 35,50 m 11 (40 39 37 35 36 34) 6 36,83 m 12 (42 40 39 37 35 36) 6 38,17 Die Prognose für den Monat 13 ist nur der gleitende Durchschnitt für die Monat vor, dh der gleitende Durchschnitt für Monat 12 m 12 38,17. Die Prognose für den Monat 13 ist daher 38. Wenn wir eine exponentielle Glättung mit einer Glättungskonstante von 0,7 anwenden, erhalten wir: 3 Verstehen von Prognoseebenen und Methoden Sie können sowohl Detailprognosen (Einzelposten) als auch Zusammenfassung (Produktlinie) erzeugen ), Die das Produktbedarfsmuster widerspiegeln. Das System analysiert die bisherigen Verkäufe, um die Prognosen mit Hilfe von 12 Prognosemethoden zu berechnen. Die Prognosen umfassen Detailinformationen auf Positionsebene und übergeordnete Informationen über eine Branche oder das Unternehmen als Ganzes. 3.1 Kriterien für die Bewertung der Projektergebnisse Abhängig von der Auswahl der Verarbeitungsoptionen und der Trends und Muster in den Verkaufsdaten sind einige Prognosemethoden für einen bestimmten historischen Datensatz besser als andere. Eine für ein Produkt geeignete Prognosemethode ist möglicherweise nicht für ein anderes Produkt geeignet. Sie können feststellen, dass eine Prognosemethode, die gute Ergebnisse in einem Stadium eines Produktlebenszyklus bereitstellt, über den gesamten Lebenszyklus hinweg angemessen bleibt. Sie können zwischen zwei Methoden wählen, um die aktuelle Leistung der Prognosemethoden zu bewerten: Prozent der Genauigkeit (POA). Mittlere absolute Abweichung (MAD). Diese beiden Leistungsbewertungsmethoden erfordern historische Verkaufsdaten für einen angegebenen Zeitraum. Dieser Zeitraum wird als Halteperiode oder Periode der besten Passung bezeichnet. Die Daten in diesem Zeitraum dienen als Grundlage für die Empfehlung, welche Prognosemethode bei der nächsten Prognoseprojektion verwendet wird. Diese Empfehlung ist spezifisch für jedes Produkt und kann von einer Prognosegeneration zur nächsten wechseln. 3.1.1 Best Fit Das System empfiehlt die Best-Fit-Prognose, indem die ausgewählten Prognosemethoden auf die Vergangenheit des Bestellverlaufs angewendet und die Prognosesimulation mit dem aktuellen Verlauf verglichen werden. Wenn Sie eine Best-Fit-Prognose generieren, vergleicht das System die tatsächlichen Kundenauftragshistorien mit Prognosen für einen bestimmten Zeitraum und berechnet, wie genau die einzelnen Prognosemethoden den Umsatz prognostizieren. Dann empfiehlt das System die genaueste Prognose als die beste Passform. Diese Grafik veranschaulicht die besten Anpassungsprognosen: Abbildung 3-1 Best-Fit-Prognose Das System verwendet diese Sequenz von Schritten, um die beste Anpassung zu ermitteln: Verwenden Sie jede angegebene Methode, um eine Prognose für die Halteperiode zu simulieren. Vergleichen Sie die tatsächlichen Verkäufe mit den simulierten Prognosen für die Halteperiode. Berechnen Sie die POA oder die MAD, um zu bestimmen, welche Prognosemethode am ehesten mit den bisherigen tatsächlichen Umsätzen übereinstimmt. Das System verwendet entweder POA oder MAD, basierend auf den Verarbeitungsoptionen, die Sie auswählen. Empfehlen Sie eine Best-Fit-Prognose durch die POA, die am nächsten zu 100 Prozent (über oder unter) oder die MAD, die am nächsten zu Null ist. 3.2 Prognosemethoden JD Edwards EnterpriseOne Forecast Management nutzt 12 Methoden zur quantitativen Prognose und zeigt an, welche Methode die beste Prognosesituation bietet. Dieser Abschnitt behandelt: Methode 1: Prozent über dem letzten Jahr. Methode 2: Berechnet Prozent über Letztes Jahr. Methode 3: Letztes Jahr zu diesem Jahr. Methode 4: Gleitender Durchschnitt. Methode 5: Lineare Approximation. Methode 6: Least Squares Regression. Methode 7: Zweite Grad Approximation. Methode 8: Flexible Methode. Methode 9: Gewichteter gleitender Durchschnitt. Methode 10: Lineare Glättung. Methode 11: Exponentielle Glättung. Methode 12: Exponentielle Glättung mit Trend - und Saisonalität. Geben Sie die Methode an, die Sie in den Verarbeitungsoptionen für das Prognosegenerierungsprogramm (R34650) verwenden möchten. Die meisten dieser Methoden bieten eine begrenzte Kontrolle. Zum Beispiel können Sie das Gewicht, das auf die jüngsten historischen Daten oder den Zeitraum der historischen Daten, die in den Berechnungen verwendet wird, platziert werden. Die Beispiele in dem Leitfaden zeigen die Berechnungsprozedur für jede der verfügbaren Prognosemethoden an, wenn ein identischer Satz von historischen Daten vorliegt. Die Methodenbeispiele im Leitfaden verwenden einen Teil oder alle dieser Datensätze, die historische Daten der letzten zwei Jahre sind. Die Prognose geht ins nächste Jahr. Diese Verkäufe Geschichte Daten ist stabil mit kleinen saisonalen Zunahmen im Juli und Dezember. Dieses Muster ist charakteristisch für ein reifes Produkt, das sich der Veralterung nähern könnte. 3.2.1 Methode 1: Prozentsatz über letztem Jahr Diese Methode verwendet die Prozentsatz über letztes Jahr Formel, um jede Prognoseperiode mit der angegebenen prozentualen Erhöhung oder Abnahme zu multiplizieren. Zur Prognose der Nachfrage, erfordert diese Methode die Anzahl der Perioden für die beste Passform plus ein Jahr der Umsatz Geschichte. Diese Methode ist nützlich, um die Nachfrage nach saisonalen Produkten mit Wachstum oder Rückgang prognostizieren. 3.2.1.1 Beispiel: Methode 1: Prozentsatz über dem letzten Jahr Die Formel "Prozent über letztes Jahr" multipliziert die Umsatzdaten des Vorjahres mit einem Faktor, den Sie angeben, und dann Projekte, die sich über das nächste Jahr ergeben. Diese Methode kann in der Budgetierung nützlich sein, um den Einfluss einer bestimmten Wachstumsrate zu simulieren, oder wenn die Verkaufsgeschichte eine signifikante saisonale Komponente aufweist. Prognose Spezifikationen: Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die Verkaufsverlaufsdaten der letzten Jahre um 10 Prozent zu erhöhen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Übereinstimmung) erforderlich sind, die Sie angeben. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Februarprognose entspricht 117 mal 1,1 128,7 gerundet auf 129. Die Märzprognose entspricht 115 mal 1,1 126,5 gerundet auf 127. 3.2.2 Methode 2: Berechneter Prozentsatz über letztem Jahr Diese Methode verwendet den berechneten Prozentsatz Letztes Jahr Formel, um die vergangenen Verkäufe von bestimmten Perioden mit Verkäufen aus den gleichen Perioden des Vorjahres zu vergleichen. Das System ermittelt einen prozentualen Anstieg oder Abfall und multipliziert dann jede Periode mit dem Prozentsatz, um die Prognose zu bestimmen. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden der Kundenauftragshistorie plus einem Jahr der Verkaufsgeschichte. Diese Methode ist nützlich, um die kurzfristige Nachfrage nach Saisonartikeln mit Wachstum oder Rückgang prognostizieren. 3.2.2.1 Beispiel: Methode 2: Berechneter Prozentsatz über Letztes Jahr Die Formel des berechneten Prozentsatzes über dem letzten Jahr multipliziert Umsatzdaten des Vorjahres mit einem Faktor, der vom System berechnet wird, und dann projiziert er das Ergebnis für das nächste Jahr. Diese Methode könnte bei der Projektion der Auswirkungen der Ausweitung der jüngsten Wachstumsrate für ein Produkt in das nächste Jahr nützlich sein, während ein saisonales Muster, das in der Verkaufsgeschichte vorhanden ist. Prognose Spezifikationen: Bereich der Umsatzgeschichte für die Berechnung der Wachstumsrate zu verwenden. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die Verkaufsgeschichte der letzten vier Perioden mit denselben vier Perioden des Vorjahres zu vergleichen. Verwenden Sie das berechnete Verhältnis, um die Projektion für das nächste Jahr zu machen. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist die Vorgeschichte, die bei der Prognoseberechnung verwendet wird: n 4: Februar-Prognose entspricht 117 mal 0,9766 114,26 gerundet auf 114. März-Prognose entspricht 115 mal 0,9766 112,31 gerundet auf 112. 3.2.3 Methode 3: Letztes Jahr in diesem Jahr Diese Methode wird verwendet Letzten Jahren Umsatz für die nächsten Jahre Prognose. Um die Nachfrage prognostizieren zu können, erfordert diese Methode die Anzahl der Perioden, die am besten geeignet sind, plus einem Jahr der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit Niveau Nachfrage oder saisonale Nachfrage ohne Trend prognostizieren. 3.2.3.1 Beispiel: Methode 3: Letztes Jahr zu diesem Jahr Die Formel "Letztes Jahr in diesem Jahr" kopiert die Verkaufsdaten des Vorjahres bis zum nächsten Jahr. Diese Methode könnte in der Budgetierung nützlich sein, um Verkäufe auf dem gegenwärtigen Niveau zu simulieren. Das Produkt ist reif und hat keinen Trend auf lange Sicht, aber ein erhebliches saisonales Nachfrage-Muster könnte existieren. Vorhersagevorgaben: Keine. Erforderliche Verkaufsgeschichte: Ein Jahr für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passung) erforderlich sind. Diese Tabelle ist Geschichte in der Prognose Berechnung verwendet: Januar-Prognose entspricht Januar des letzten Jahres mit einem Prognosewert von 128. Februar-Prognose entspricht Februar des letzten Jahres mit einem Prognosewert von 117. März-Prognose entspricht März des letzten Jahres mit einem Prognosewert von 115. 3.2.4 Methode 4: Moving Average Diese Methode verwendet die Moving Average-Formel, um die angegebene Anzahl von Perioden zu berechnen, um die nächste Periode zu projizieren. Sie sollten es häufig neu berechnen (monatlich oder mindestens vierteljährlich), um den sich ändernden Bedarf zu reflektieren. Um die Nachfrage prognostizieren zu können, benötigt diese Methode die Anzahl der Perioden, die am besten passen, plus die Anzahl der Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach reifen Produkten ohne Trend prognostizieren. 3.2.4.1 Beispiel: Methode 4: Moving Average Moving Average (MA) ist eine beliebte Methode zur Mittelung der Ergebnisse der letzten Verkaufsgeschichte, um eine Projektion kurzfristig zu bestimmen. Die MA-Prognosemethode bleibt hinter Trends zurück. Forecast Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte zeigt starke Trend-oder saisonale Muster. Diese Methode funktioniert besser für Kurzstrecken-Prognosen von reifen Produkten als für Produkte, die in den Wachstums-oder Obsoleszenz Stufen des Lebenszyklus sind. Prognosespezifikationen: n entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Es resultiert in einer stabilen Prognose, ist aber langsam zu erkennen Verschiebungen in der Höhe des Umsatzes. Umgekehrt ist ein kleiner Wert für n (wie z. B. 3) schneller auf Verschiebungen im Umsatzniveau zu reagieren, aber die Prognose könnte so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Erforderliche Verkaufsgeschichte: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Februar-Prognose entspricht (114 119 137 125) 4 123,75 gerundet auf 124. März-Prognose entspricht (119 137 125 124) 4 126,25 gerundet auf 126. 3.2.5 Methode 5: Lineare Approximation Diese Methode Verwendet die Formel zur linearen Approximation, um einen Trend aus der Anzahl der Perioden des Kundenauftragsverlaufs zu berechnen und diesen Trend zur Prognose zu projizieren. Sie sollten den Trend monatlich neu berechnen, um Änderungen in Trends zu erkennen. Diese Methode erfordert die Anzahl der Perioden der besten Übereinstimmung plus die Anzahl der angegebenen Perioden der Kundenauftragshistorie. Diese Methode ist nützlich, um die Nachfrage nach neuen Produkten oder Produkten mit konstanten positiven oder negativen Trends, die nicht aufgrund von saisonalen Schwankungen sind prognostiziert. 3.2.5.1 Beispiel: Methode 5: Lineare Approximation Lineare Approximation berechnet einen Trend, der auf zwei Verkaufsverlaufsdatenpunkten basiert. Diese beiden Punkte definieren eine gerade Linie, die in die Zukunft projiziert wird. Verwenden Sie diese Methode mit Vorsicht, weil Langstreckenvorhersagen durch kleine Änderungen an nur zwei Datenpunkten genutzt werden. Prognosespezifikationen: n entspricht dem Datenpunkt in der Verkaufsgeschichte, der mit dem aktuellsten Datenpunkt verglichen wird, um einen Trend zu identifizieren. Geben Sie beispielsweise n 4 an, um die Differenz zwischen Dezember (jüngste Daten) und August (vier Perioden vor Dezember) als Grundlage für die Berechnung des Trends zu verwenden. Mindestens erforderlicher Umsatzverlauf: n plus 1 plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Januar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (1-mal 2) 139. Februar-Prognose Dezember des vergangenen Jahres 1 (Trend) 137 (2-mal 2) 141. März-Prognose Dezember des vergangenen Jahres 1 (Trend) entspricht 137 (3 mal 2) 143. 3.2.6 Methode 6: Least Squares Regression Die Methode der Least Squares Regression (LSR) leitet eine Gleichung ab, die eine lineare Beziehung zwischen den historischen Verkaufsdaten beschreibt Und der Lauf der Zeit. LSR paßt auf eine Zeile zum ausgewählten Datenbereich, so daß die Summe der Quadrate der Differenzen zwischen den tatsächlichen Verkaufsdatenpunkten und der Regressionsgeraden minimiert wird. Die Prognose ist eine Projektion dieser Geraden in die Zukunft. Diese Methode erfordert Verkaufsdatenhistorie für den Zeitraum, der durch die Anzahl der bestmöglichen Perioden plus der angegebenen Anzahl von historischen Datenperioden dargestellt wird. Die Mindestanforderung sind zwei historische Datenpunkte. Diese Methode ist nützlich, um die Nachfrage zu prognostizieren, wenn ein linearer Trend in den Daten ist. 3.2.6.1 Beispiel: Methode 6: Least Squares Regression Lineare Regression oder Least Squares Regression (LSR) ist die beliebteste Methode, um einen linearen Trend in historischen Verkaufsdaten zu identifizieren. Das Verfahren berechnet die Werte für a und b, die in der Formel verwendet werden sollen: Diese Gleichung beschreibt eine Gerade, wobei Y für Verkäufe steht und X für Zeit steht. Lineare Regression ist langsam zu erkennen, Wendepunkte und Schritt Funktion Verschiebungen in der Nachfrage. Die lineare Regression passt auf eine gerade Linie zu den Daten, selbst wenn die Daten saisonal oder besser durch eine Kurve beschrieben werden. Wenn Verkaufsgeschichte-Daten einer Kurve folgen oder ein starkes saisonales Muster aufweisen, treten Vorhersage-Bias und systematische Fehler auf. Prognosespezifikationen: n entspricht den Perioden der Verkaufsgeschichte, die bei der Berechnung der Werte für a und b verwendet werden. Geben Sie beispielsweise n 4 an, um die Historie von September bis Dezember als Grundlage für die Berechnungen zu verwenden. Wenn Daten verfügbar sind, würde ein grßeres n (wie beispielsweise n 24) gewöhnlich verwendet werden. LSR definiert eine Zeile für so wenige wie zwei Datenpunkte. Für dieses Beispiel wurde ein kleiner Wert für n (n 4) gewählt, um die manuellen Berechnungen zu reduzieren, die erforderlich sind, um die Ergebnisse zu verifizieren. Mindestens erforderlicher Umsatzverlauf: n Perioden plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoseberechnung verwendet: Die Märzprognose entspricht 119,5 (7 mal 2,3) 135,6 auf 136 gerundet. 3.2.7 Methode 7: Zweite Grad Approximation Um die Prognose zu projizieren, verwendet diese Methode die Zweite Grad-Approximationsformel, um eine Kurve darzustellen Die auf der Anzahl der Verkaufsphasen beruht. Diese Methode erfordert die Anzahl der Perioden am besten geeignet plus die Anzahl der Perioden der Verkaufsauftragsverlauf mal drei. Diese Methode ist nicht geeignet, die Nachfrage nach einem langfristigen Zeitraum zu prognostizieren. 3.2.7.1 Beispiel: Methode 7: Second Degree Approximation Die lineare Regression ermittelt Werte für a und b in der Prognoseformel Y a b X mit dem Ziel, eine Gerade an die Verkaufsgeschichtsdaten anzupassen. Zweite Grad Approximation ist ähnlich, aber dieses Verfahren bestimmt Werte für a, b und c in dieser Prognose Formel: Y a b X c X 2 Das Ziel dieses Verfahrens ist es, eine Kurve auf die Verkaufsgeschichte Daten passen. Dieses Verfahren ist nützlich, wenn sich ein Produkt im Übergang zwischen den Lebenszyklusstufen befindet. Wenn sich beispielsweise ein neues Produkt von der Einführung in die Wachstumsstadien bewegt, könnte sich die Absatzentwicklung beschleunigen. Wegen des Termes der zweiten Ordnung kann die Prognose schnell an die Unendlichkeit heranreichen oder auf Null fallen (abhängig davon, ob der Koeffizient c positiv oder negativ ist). Diese Methode ist nur kurzfristig nutzbar. Prognose Spezifikationen: die Formel finden a, b und c, um eine Kurve auf genau drei Punkte passen. Sie geben n die Anzahl der Zeitperioden an, die in jedem der drei Punkte akkumuliert werden sollen. In diesem Beispiel ist n 3. Die tatsächlichen Verkaufsdaten für April bis Juni sind in den ersten Punkt Q1 zusammengefasst. Juli bis September werden addiert, um Q2 zu schaffen, und Oktober bis Dezember Summe zu Q3. Die Kurve ist an die drei Werte Q1, Q2 und Q3 angepasst. Erforderliche Verkaufsgeschichte: 3 mal n Perioden für die Berechnung der Prognose plus die Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Passform) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Q0 (Jan) (Feb) (Mar) Q1 (Apr) (Mai) (Jun), die 125 122 137 384 Q2 (Jul) (Aug) (Sep) entspricht 140 129 entspricht Der nächste Schritt besteht darin, die drei Koeffizienten a, b und c zu berechnen, die in der Prognoseformel Y ab X c X 2 verwendet werden sollen. Q1, Q2 und Q3 werden auf der Grafik dargestellt, wobei die Zeit auf der horizontalen Achse aufgetragen ist. Q1 stellt die gesamten historischen Verkäufe für April, Mai und Juni dar und ist auf X 1 Q2 dargestellt, entspricht Juli bis September Q3 entspricht Oktober bis Dezember und Q4 repräsentiert Januar bis März. Fig. 3-2 Plotten von Q1, Q2, Q3 und Q4 für die Annäherung zweiter Ordnung Drei Gleichungen beschreiben die drei Punkte auf dem Graphen: (1) Q1 (Q2 a 2b 4c) (3) Q3 a bX cX 2 mit X 3 (Q3 a 3b 9c) Lösen Sie die drei Gleichungen gleichzeitig (2) ndash (1) Q2 ndash Q1 b 3c b (Q2 ndash Q1) ndash 3c Ersetzen Sie die Gleichung 1 (1) aus Gleichung 2 (2) und lösen Sie für b: B in Gleichung (3): (3) Q3 a 3 (Q2 ndash Q1) ndash 3c 9c a Q3 ndash 3 (Q2 ndash Q1) Schließe diese Gleichungen für a und b in Gleichung (1): (1) Q3 ndash ein (Q2 ndash Q2) 2 Das zweite Approximationsverfahren berechnet a, b und c wie folgt: a Q3 ndash 3 (Q2 ndash Q1) (Q2 ndash Q1) (Q2 ndash Q1) ) (N3) n0 (n3) n0 (n2) n0 (n3) n0 (n) n (n) 370 ndash 400) (384 ndash 400) 2 ndash23 Dies ist eine Berechnung der Näherungsprognose des zweiten Grades: Y a bX cX 2 322 85X (ndash23) (X 2) Wenn X 4, Q4 322 340 ndash 368 294. Die Prognose entspricht 294 3 98 pro Zeitraum. Wenn X 5, Q5 322 425 ndash 575 172. Die Prognose entspricht 172 3 58,33 auf 57 pro Periode gerundet. Wenn X 6, Q6 322 510 ndash 828 4. Die Prognose ist 4 3 1,33 gerundet auf 1 pro Periode. Dies ist die Prognose für das nächste Jahr, Letztes Jahr zu diesem Jahr: 3.2.8 Methode 8: Flexible Methode Mit dieser Methode können Sie die bestmögliche Anzahl von Perioden des Verkaufsauftragsverlaufs auswählen, die n Monate vor dem Startdatum der Prognose beginnt Wenden Sie einen prozentualen Anstieg oder Abnahme Multiplikationsfaktor, mit dem die Prognose zu ändern. Diese Methode ähnelt Methode 1, Prozent über dem letzten Jahr, außer dass Sie die Anzahl der Perioden angeben können, die Sie als Basis verwenden. Abhängig davon, was Sie als n wählen, erfordert diese Methode Perioden am besten geeignet plus die Anzahl der angegebenen Perioden der Verkaufsdaten. Diese Methode ist nützlich, um die Nachfrage nach einem geplanten Trend vorherzusagen. 3.2.8.1 Beispiel: Methode 8: Flexible Methode Die Flexible Methode (Prozentsatz über n Monate vor) ähnelt der Methode 1, Prozent über dem letzten Jahr. Beide Methoden multiplizieren Verkaufsdaten aus einem früheren Zeitraum mit einem von Ihnen angegebenen Faktor und projizieren dieses Ergebnis dann in die Zukunft. In der Percent Over Last Year Methode basiert die Projektion auf Daten aus dem gleichen Zeitraum des Vorjahres. Sie können auch die Flexible Methode verwenden, um einen anderen Zeitraum als denselben Zeitraum des letzten Jahres anzugeben, der als Grundlage für die Berechnungen verwendet werden soll. Multiplikationsfaktor. Geben Sie beispielsweise 110 in der Verarbeitungsoption an, um die vorherigen Verkaufsverlaufsdaten um 10 Prozent zu erhöhen. Basiszeitraum. Zum Beispiel bewirkt n 4, dass die erste Prognose im September des letzten Jahres auf Verkaufsdaten basiert. Mindestens erforderliche Verkaufsgeschichte: Anzahl der Perioden bis zur Basisperiode plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance erforderlich sind (Perioden der besten Abstimmung). 3.2.9 Methode 9: Gewichteter gleitender Durchschnitt Die gewichtete gleitende Durchschnittsformel ist vergleichbar mit Methode 4, Gleitende Durchschnittsformel, da sie im Vergleich zum vorausgegangenen Geschäftsverlauf die vorhergehende Verkaufshistorie projiziert. Mit dieser Formel können Sie jedoch Gewichte für jede der vorherigen Perioden zuordnen. Diese Methode erfordert die Anzahl der gewählten Perioden plus die Anzahl der Perioden, die am besten zu den Daten passen. Ähnlich wie bei Moving Average, liegt diese Methode hinter den Nachfrage-Trends, so dass diese Methode nicht für Produkte mit starken Trends oder Saisonalität empfohlen wird. Diese Methode ist nützlich, um die Nachfrage nach ausgereiften Produkten mit einer Nachfrage zu prognostizieren, die relativ hoch ist. 3.2.9.1 Beispiel: Methode 9: Gewichteter gleitender Durchschnitt Die Methode des gewichteten gleitenden Durchschnitts (WMA) ähnelt Methode 4, Gleitender Durchschnitt (MA). Sie können jedoch den historischen Daten bei Verwendung von WMA ungleiche Gewichte zuordnen. Die Methode berechnet einen gewichteten Durchschnitt der letzten Verkäufe Geschichte, um zu einer Projektion für die kurzfristige kommen. Jüngere Daten sind in der Regel ein größeres Gewicht als ältere Daten zugeordnet, so dass WMA ist besser auf Veränderungen in der Ebene des Umsatzes. Allerdings Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trends oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. Die Anzahl der Perioden der Verkaufsgeschichte (n), die in der Prognoserechnung verwendet werden sollen. Geben Sie beispielsweise n 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Grundlage für die Projektion in die nächste Zeitperiode zu verwenden. Ein großer Wert für n (wie 12) erfordert mehr Umsatz Geschichte. Ein solcher Wert führt zu einer stabilen Prognose, aber es ist langsam, Veränderungen im Absatzniveau zu erkennen. Umgekehrt reagiert ein kleiner Wert für n (wie 3) schneller auf Verschiebungen des Umsatzniveaus, doch könnte die Prognose so weit schwanken, dass die Produktion nicht auf die Variationen reagieren kann. Die Gesamtzahl der Perioden für die Verarbeitungsoption rdquo14 - Perioden bis includerdquo sollte 12 Monate nicht überschreiten. Das Gewicht, das jeder der historischen Datenperioden zugeordnet ist. Die zugeordneten Gewichte müssen 1,00 betragen. Zum Beispiel, wenn n 4, weisen Sie Gewichte von 0,50, 0,25, 0,15 und 0,10 zu, wobei die jüngsten Daten das größte Gewicht empfangen. Mindestens erforderlicher Umsatzverlauf: n plus Anzahl der Zeiträume, die für die Bewertung der Prognoseperformance (Perioden der besten Abstimmung) erforderlich sind. Diese Tabelle wird in der Prognoserechnung verwendet: Die Januarprognose entspricht (131 mal 0,10) (114 mal 0,15) (119 mal 0,25) (137 mal 0,50) (0,10 0,15 0,25 0,50) 128,45 auf 128 gerundet (119 mal 0,10) (128 mal 0,15) (128 mal 0,25) (128 mal 0,50) 1 128,45 abgerundet auf 128. März-Vorhersage entspricht 119 mal 0,10 (137 mal 0,15) (128 mal 0,25) 128. 3.2.10 Methode 10: Lineare Glättung Diese Methode berechnet einen gewichteten Durchschnitt der bisherigen Verkaufsdaten. Bei dieser Methode wird die Anzahl der Perioden der Kundenauftragshistorie (von 1 bis 12) verwendet, die in der Bearbeitungsoption angegeben ist. Das System verwendet eine mathematische Progression, um Daten im Bereich von dem ersten (am wenigsten Gewicht) bis zum letzten Gewicht (das meiste Gewicht) zu wiegen. Das System projiziert diese Informationen zu jeder Periode in der Prognose. Diese Methode benötigt für die Anzahl der Perioden, die in der Verarbeitungsoption angegeben sind, die jeweils am besten passende Monatshälfte plus den Kundenauftragshistorie. 3.2.10.1 Beispiel: Methode 10: Lineare Glättung Diese Methode ähnelt Methode 9, WMA. Jedoch wird anstelle der willkürlichen Zuweisung von Gewichten zu den historischen Daten eine Formel verwendet, um Gewichtungen zuzuweisen, die linear abnehmen und auf 1,00 summieren. Das Verfahren berechnet dann einen gewichteten Durchschnitt der letzten Verkaufsgeschichte, um zu einer Projektion für die kurze Zeit zu gelangen. Wie alle linearen gleitenden durchschnittlichen Prognosetechniken, Prognose Bias und systematische Fehler auftreten, wenn die Produktverkäufe Geschichte starke Trend-oder saisonale Muster zeigt. Diese Methode funktioniert besser für Kurzstreckenvorhersagen von reifen Produkten als für Produkte in den Wachstums - oder Veralterungsstadien des Lebenszyklus. N entspricht der Anzahl der Perioden der Verkaufsgeschichte, die in der Prognoserechnung verwendet werden sollen. Geben Sie z. B. n gleich 4 in der Verarbeitungsoption an, um die letzten vier Perioden als Basis für die Projektion in die nächste Zeitperiode zu verwenden. Das System vergibt automatisch die Gewichte den historischen Daten, die linear abnehmen und auf 1,00 summieren. Wenn z. B. n gleich 4 ist, weist das System Gewichte von 0,4, 0,3, 0,2 und 0,1 zu, wobei die neuesten Daten das größte Gewicht empfangen. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.11 Method 11: Exponential Smoothing This method calculates a smoothed average, which becomes an estimate representing the general level of sales over the selected historical data periods. This method requires sales data history for the time period that is represented by the number of periods best fit plus the number of historical data periods that are specified. The minimum requirement is two historical data periods. This method is useful to forecast demand when no linear trend is in the data. 3.2.11.1 Example: Method 11: Exponential Smoothing This method is similar to Method 10, Linear Smoothing. In Linear Smoothing, the system assigns weights that decline linearly to the historical data. In Exponential Smoothing, the system assigns weights that exponentially decay. The equation for Exponential Smoothing forecasting is: Forecast alpha (Previous Actual Sales) (1 ndashalpha) (Previous Forecast) The forecast is a weighted average of the actual sales from the previous period and the forecast from the previous period. Alpha is the weight that is applied to the actual sales for the previous period. (1 ndash alpha) is the weight that is applied to the forecast for the previous period. Values for alpha range from 0 to 1 and usually fall between 0.1 and 0.4. The sum of the weights is 1.00 (alpha (1 ndash alpha) 1). You should assign a value for the smoothing constant, alpha. If you do not assign a value for the smoothing constant, the system calculates an assumed value that is based on the number of periods of sales history that is specified in the processing option. alpha equals the smoothing constant that is used to calculate the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. n equals the range of sales history data to include in the calculations. Generally, one year of sales history data is sufficient to estimate the general level of sales. For this example, a small value for n (n 4) was chosen to reduce the manual calculations that are required to verify the results. Exponential Smoothing can generate a forecast that is based on as little as one historical data point. Minimum required sales history: n plus the number of time periods that are required for evaluating the forecast performance (periods of best fit). This table is history used in the forecast calculation: 3.2.12 Method 12: Exponential Smoothing with Trend and Seasonality This method calculates a trend, a seasonal index, and an exponentially smoothed average from the sales order history. The system then applies a projection of the trend to the forecast and adjusts for the seasonal index. This method requires the number of periods best fit plus two years of sales data, and is useful for items that have both trend and seasonality in the forecast. You can enter the alpha and beta factor, or have the system calculate them. Alpha and beta factors are the smoothing constant that the system uses to calculate the smoothed average for the general level or magnitude of sales (alpha) and the trend component of the forecast (beta). 3.2.12.1 Example: Method 12: Exponential Smoothing with Trend and Seasonality This method is similar to Method 11, Exponential Smoothing, in that a smoothed average is calculated. Das Verfahren 12 enthält jedoch auch einen Term in der Prognose-Gleichung, um einen geglätteten Trend zu berechnen. The forecast is composed of a smoothed average that is adjusted for a linear trend. Wenn in der Verarbeitungsoption angegeben, wird die Prognose auch saisonbedingt angepasst. Alpha equals the smoothing constant that is used in calculating the smoothed average for the general level or magnitude of sales. Values for alpha range from 0 to 1. Beta equals the smoothing constant that is used in calculating the smoothed average for the trend component of the forecast. Values for beta range from 0 to 1. Whether a seasonal index is applied to the forecast. Alpha and beta are independent of one another. They do not have to sum to 1.0. Minimum required sales history: One year plus the number of time periods that are required to evaluate the forecast performance (periods of best fit). When two or more years of historical data is available, the system uses two years of data in the calculations. Method 12 uses two Exponential Smoothing equations and one simple average to calculate a smoothed average, a smoothed trend, and a simple average seasonal index. An exponentially smoothed average: An exponentially smoothed trend: A simple average seasonal index: Figure 3-3 Simple Average Seasonal Index The forecast is then calculated by using the results of the three equations: L is the length of seasonality (L equals 12 months or 52 weeks). t is the current time period. m is the number of time periods into the future of the forecast. S is the multiplicative seasonal adjustment factor that is indexed to the appropriate time period. This table lists history used in the forecast calculation: This section provides an overview of Forecast Evaluations and discusses: You can select forecasting methods to generate as many as 12 forecasts for each product. Each forecasting method might create a slightly different projection. When thousands of products are forecast, a subjective decision is impractical regarding which forecast to use in the plans for each product. The system automatically evaluates performance for each forecasting method that you select and for each product that you forecast. You can select between two performance criteria: MAD and POA. MAD ist ein Maß für den Prognosefehler. POA ist ein Maß für die Vorhersage. Both of these performance evaluation techniques require actual sales history data for a period specified by you. The period of recent history used for evaluation is called a holdout period or period of best fit. To measure the performance of a forecasting method, the system: Uses the forecast formulas to simulate a forecast for the historical holdout period. Makes a comparison between the actual sales data and the simulated forecast for the holdout period. When you select multiple forecast methods, this same process occurs for each method. Multiple forecasts are calculated for the holdout period and compared to the known sales history for that same period. The forecasting method that produces the best match (best fit) between the forecast and the actual sales during the holdout period is recommended for use in the plans. This recommendation is specific to each product and might change each time that you generate a forecast. 3.3.1 Mean Absolute Deviation Mean Absolute Deviation (MAD) is the mean (or average) of the absolute values (or magnitude) of the deviations (or errors) between actual and forecast data. MAD ist ein Maß für die durchschnittliche Größe der zu erwartenden Fehler bei einer Prognosemethode und einem Datenverlauf. Da bei der Berechnung absolute Werte verwendet werden, werden positive Fehler nicht negativ ausgewertet. When comparing several forecasting methods, the one with the smallest MAD is the most reliable for that product for that holdout period. When the forecast is unbiased and errors are normally distributed, a simple mathematical relationship exists between MAD and two other common measures of distribution, which are standard deviation and Mean Squared Error. For example: MAD (Sigma (Actual) ndash (Forecast)) n Standard Deviation, (sigma) cong 1.25 MAD Mean Squared Error cong ndashsigma2 This example indicates the calculation of MAD for two of the forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.1.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: Mean Absolute Deviation equals (2 1 20 10 14) 5 9.4. Based on these two choices, the Moving Average, n 4 method is recommended because it has the smaller MAD, 9.4, for the given holdout period. 3.3.2 Percent of Accuracy Percent of Accuracy (POA) is a measure of forecast bias. Wenn die Prognosen konsequent zu hoch sind, sammeln sich die Vorräte an und die Lagerhaltungskosten steigen. When forecasts are consistently too low, inventories are consumed and customer service declines. A forecast that is 10 units too low, then 8 units too high, then 2 units too high is an unbiased forecast. The positive error of 10 is canceled by negative errors of 8 and 2. (Error) (Actual) ndash (Forecast) When a product can be stored in inventory, and when the forecast is unbiased, a small amount of safety stock can be used to buffer the errors. In this situation, eliminating forecast errors is not as important as generating unbiased forecasts. However, in service industries, the previous situation is viewed as three errors. The service is understaffed in the first period, and then overstaffed for the next two periods. In Services ist die Größenordnung der Prognosefehler in der Regel wichtiger als die prognostizierte Bias. POA (SigmaForecast sales during holdout period) (SigmaActual sales during holdout period) times 100 percent The summation over the holdout period enables positive errors to cancel negative errors. When the total of forecast sales exceeds the total of actual sales, the ratio is greater than 100 percent. Of course, the forecast cannot be more than 100 percent accurate. When a forecast is unbiased, the POA ratio is 100 percent. A 95 percent accuracy rate is more desirable than a 110 percent accurate rate. The POA criterion selects the forecasting method that has a POA ratio that is closest to 100 percent. This example indicates the calculation of POA for two forecasting methods. This example assumes that you have specified in the processing option that the holdout period length (periods of best fit) is equal to five periods. 3.3.2.1 Method 1: Last Year to This Year This table is history used in the calculation of MAD, given Periods of Best Fit 5: 3.4.2 Forecast Accuracy These statistical laws govern forecast accuracy: A long term forecast is less accurate than a short term forecast because the further into the future you project the forecast, the more variables can affect the forecast. A forecast for a product family tends to be more accurate than a forecast for individual members of the product family. Some errors cancel each other as the forecasts for individual items summarize into the group, thus creating a more accurate forecast. 3.4.3 Forecast Considerations You should not rely exclusively on past data to forecast future demands. These circumstances might affect the business, and require you to review and modify the forecast: New products that have no past data. Plans for future sales promotion. Changes in national and international politics. New laws and government regulations. Weather changes and natural disasters. Innovations from competition. You can use long term trend analysis to influence the design of the forecasts: Leading economic indicators. 3.4.4 Forecasting Process You use the Refresh Actuals program (R3465) to copy data from the Sales Order History File table (F42119), the Sales Order Detail File table (F4211), or both, into either the Forecast File table (F3460) or the Forecast Summary File table (F3400), depending on the kind of forecast that you plan to generate. Scripting on this page enhances content navigation, but does not change the content in any way. Weighted Moving Average Forecasting Methods: Pros and Cons Hi, LOVE your Post. Was wondering if you could elaborate futher. We use SAP. In it there is a selection you can choose before you run your forecast called initialization. If you check this option you get a forecast result, if you run forecast again, in the same period, and do not check initialization the result changes. I can not figure out what that initialization is doing. I mean, mathmatically. Which forecast result is best to save and use for example. The changes between the two are not in the forecasted quantity but in the MAD and Error, safety stock and ROP quantities. Not sure if you use SAP. hi thanks for explaining so effeciently its too gd. thanks again Jaspreet Leave a Reply Cancel reply Most Popular Posts About Shmula Pete Abilla is the founder of Shmula and the character, Kanban Cody. He has helped companies like Amazon, Zappos, eBay, Backcountry, and others reduce costs and improve the customer experience. He does this through a systematic method for identifying pain points that impact the customer and the business, and encourages broad participation from the company associates to improve their own processes. This website is a collection of his experiences he wants to share with you. Get started with free downloads


No comments:

Post a Comment