(Veraltet) Forecasting - Autoregressive Integrated Moving Average (ARIMA) Der Microsoft DataMarket wird in den Ruhestand versetzt und diese API wurde veraltet. Dieser Dienst implementiert Autoregressive Integrated Moving Average (ARIMA), um Prognosen basierend auf den vom Benutzer bereitgestellten historischen Daten zu erzeugen. Wird die Nachfrage nach einem bestimmten Produkt in diesem Jahr erhöhen Kann ich meine Produktverkäufe für die Weihnachtszeit vorhersagen, damit ich mein Inventar effektiv planen kann Vorhersagemodelle sind geeignet, solche Fragen anzusprechen. Angesichts der bisherigen Daten untersuchen diese Modelle versteckte Trends und Saisonalität, um zukünftige Trends vorherzusagen. Probieren Sie Azure Machine Learning kostenlos aus Keine Kreditkarten - oder Azure-Abo erforderlich. Erste Schritte gt Dieser Webservice kann von Benutzern potentiell über eine mobile App, über eine Website oder sogar auf einem lokalen Computer verbraucht werden. Aber der Zweck des Web-Service ist auch als Beispiel dafür dienen, wie Azure Machine Learning verwendet werden, um Web-Services auf R-Code zu erstellen. Mit nur wenigen Zeilen von R-Code und Klicks einer Schaltfläche in Azure Machine Learning Studio kann ein Experiment mit R-Code erstellt und als Web-Service veröffentlicht werden. Der Webservice kann dann auf dem Azure Marketplace veröffentlicht und von Benutzern und Geräten auf der ganzen Welt konsumiert werden, ohne dass eine Infrastruktureinrichtung vom Autor des Webdienstes eingerichtet wurde. Verbrauch von Web-Service Dieser Dienst akzeptiert 4 Argumente und berechnet die ARIMA-Prognosen. Die Eingabeargumente sind: Frequenz - Zeigt die Häufigkeit der Rohdaten an (täglich wöchentlich jährlich jährlich). Horizont - Zukunft Prognose Zeitrahmen. Datum - Hinzufügen in die neuen Zeitreihendaten für die Zeit. Wert - Hinzufügen in die neuen Zeitreihendatenwerte. Die Ausgabe des Dienstes ist die berechnete Prognosewerte. Proben-Eingang könnte sein: Frequenz - 12 Horizon - 12 Datum - 115201221520123152012415201251520126152012715201281520129152012101520121115201212152012 115201321520133152013415201351520136152013715201381520139152013101520131115201312152013 115201421520143152014415201451520146152014715201481520149152014 Value - 3.4793.683.8323.9413.7973.5863.5083.7313.9153.8443.6343.5493.5573.7853.7823.6013.5443.5563.653.7093.6823.511 3.4293.513.5233.5253.6263.6953.7113.7113.6933 .5713.509 Dieser Dienst, wie auf dem Azure-Marktplatz gehostet, ist ein OData-Dienst, den diese über POST - oder GET-Methoden aufgerufen werden können. Es gibt mehrere Möglichkeiten, den Dienst in einer automatisierten Weise zu verbrauchen (eine Beispiel-App ist hier). Starten des C-Codes für den Web-Service-Verbrauch: Erstellung des Web-Service Dieser Webservice wurde unter Verwendung von Azure Machine Learning erstellt. Für eine kostenlose Testversion sowie Einführungsvideos zum Erstellen von Experimenten und zum Veröffentlichen von Webdiensten. Sehen Sie bitte azureml. Unten ist ein Screenshot des Experiments, das den Webdienst und den Beispielcode für jedes der Module im Experiment erstellt hat. Aus Azure Machine Learning wurde ein neues Blindversuch erstellt. Beispiel-Eingangsdaten wurden mit einem vordefinierten Datenschema hochgeladen. Verknüpft mit dem Datenschema ist ein Execute R Script-Modul, das das ARIMA-Prognosemodell mithilfe von Auto. arima - und Prognosefunktionen aus R erzeugt. Experimentfluss: Einschränkungen Dies ist ein sehr einfaches Beispiel für die ARIMA-Prognose. Wie aus dem obigen Beispielcode ersichtlich ist, ist keine Fehlererfassung implementiert, und der Dienst geht davon aus, dass alle Variablen kontinuierliche positive Werte sind und die Frequenz eine ganze Zahl größer als 1 sein sollte. Die Länge der Datums - und Wertvektoren sollte dieselbe sein . Die Datumsvariable sollte dem Format mmddyyyy entsprechen. Häufig gestellte Fragen zum Verbrauch des Webdienstes oder zur Veröffentlichung auf dem Markt finden Sie hier. Autoregressiver gleitender Durchschnitt In der Statistik. Autoregressive gleitende Durchschnitt (ARMA) Modelle. Manchmal auch Box-Jenkins-Modelle nach George Box und G. M. Jenkins. Werden typischerweise auf Zeitreihendaten angewendet. Bei einer Zeitreihe von Daten Xt. Ist das ARMA-Modell ein Werkzeug, um die zukünftigen Werte in dieser Serie zu verstehen und zu prognostizieren. Das Modell besteht aus zwei Teilen, einem autoregressiven (AR) Teil und einem gleitenden Durchschnitt (MA) Teil. Das Modell wird gewöhnlich als das ARMA (p, q) - Modell bezeichnet, wobei p die Ordnung des autoregressiven Teils und q die Ordnung des gleitenden Mittelteils (wie nachstehend definiert) ist. Autoregressives Modell Edit Die Notation AR (p) bezieht sich auf das autoregressive Modell der Ordnung p. Das AR (p) - Modell wird geschrieben Ein autoregressives Modell ist im wesentlichen ein unendlicher Impulsantwortfilter mit einer zusätzlichen Interpretation, die auf ihn gelegt wird. Einige Einschränkungen sind auf den Werten der Parameter dieses Modells notwendig, damit das Modell stationär bleibt. Beispielsweise sind Prozesse im AR (1) - Modell mit 1 gt 1 nicht stationär. Beispiel: Ein AR (1) - Prozess-Edit Ein AR (1) - Prozess ist gegeben durch Es ist ersichtlich, dass die Autokovarianz-Funktion mit einer Abklingzeit von zerfällt. Die spektrale Dichtefunktion ist die inverse Fourier-Transformation der Autokovarianz-Funktion. In diskreter Form ist dies die zeitdiskrete inverse Fourier-Transformation, die ein Lorentz-Profil für die spektrale Dichte ergibt: Berechnung der AR-Parameter Das AR (p) - Modell ist durch die Gleichung gegeben. Da der letzte Teil der Gleichung nicht ist - null, wenn m 0 ist, wird die Gleichung üblicherweise gelöst, indem man sie als Matrix für m gt 0 repräsentiert und erhält so Gleichung Ableitung Bearbeiten Die Gleichung, die den AR-Prozeß definiert, multipliziert beide Seiten mit Xtm und nimmt Erwartungswertausbeuten, die das Yule ergeben - Walker-Gleichungen: Bewegtes Durchschnittsmodell Bearbeiten Die Schreibweise MA (q) bezieht sich auf das gleitende Durchschnittsmodell der Ordnung q. Wo die 1. Q sind die Parameter des Modells und der t. T-1. Sind wieder die Fehlerterme. Das gleitende Durchschnittsmodell ist im Wesentlichen ein endlicher Impulsantwortfilter mit einer zusätzlichen Interpretation. Autoregressives gleitendes Durchschnittsmodell Bearbeiten Die Notation ARMA (p. Q) bezieht sich auf das Modell mit p autoregressiven Terme und q gleitenden Durchschnittstermen. Dieses Modell enthält die Modelle AR (p) und MA (q), Anmerkung zu den Fehlertermen Bearbeiten N (0, 2) wobei 2 die Varianz ist. Diese Annahmen können geschwächt werden, aber dies wird die Eigenschaften des Modells ändern. Insbesondere eine Änderung der i. i.d. Annahme würde einen ziemlich grundlegenden Unterschied machen. Spezifikation in Bezug auf den Lag-Operator In einigen Texten werden die Modelle in Bezug auf den Lag-Operator L spezifiziert. In diesem Fall ist das AR (p) - Modell gegeben durch wobei das Polynom repräsentiert ist. Das MA (q) - Modell ist gegeben durch wobei das Polynom repräsentiert Schließlich wird das kombinierte ARMA-Modell (p. q) ARMA-Modelle im Allgemeinen können nach Auswahl von p und q durch kleinste Fehlerquadrate angepasst werden, um die Werte der Parameter zu finden, die den Fehlertermin minimieren. Es wird allgemein als gute Praxis angesehen, die kleinsten Werte von p und q zu finden, die eine annehmbare Anpassung an die Daten liefern. Für ein reines AR-Modell können die Yule-Walker-Gleichungen verwendet werden, um eine Anpassung bereitzustellen. Verallgemeinerungen Bearbeiten Die Abhängigkeit von X t von vergangenen Werten und den Fehlertermen t wird als linear angenommen, sofern nicht anders angegeben. Wenn die Abhängigkeit nichtlinear ist, wird das Modell spezifisch als nichtlineares gleitendes Mittel (NMA), nichtlineares autoregressives (NAR) oder nichtlineares autoregressives gleitendes Durchschnittsmodell (NARMA) bezeichnet. Autoregressive gleitende Durchschnittsmodelle können auf andere Weise verallgemeinert werden. Siehe auch autoregressive Conditional Heteroskedasticity (ARCH) Modelle und autoregressive integrierte Moving Average (ARIMA) Modelle. Wenn mehrere Zeitreihen montiert werden sollen, kann ein vektorisiertes ARIMA (oder VARIMA) Modell eingebaut werden. Wenn die fraglichen Zeitreihen langes Gedächtnis aufweisen, dann ist fraktioniertes ARIMA (FARIMA, manchmal auch als ARFIMA bezeichnet) Modellierung geeignet. Wenn die Daten saisonale Effekte enthalten, kann sie durch ein SARIMA-Modell (saisonales ARIMA) modelliert werden. Eine weitere Verallgemeinerung ist das multiskalige autoregressive (MAR) Modell. Ein MAR-Modell wird durch die Knoten eines Baums indexiert, während ein autoregressives Standardmodell (diskrete Zeit) durch Ganzzahlen indiziert wird. Siehe multiscale autoregressive Modell für eine Liste von Referenzen. Siehe auch Edit References Edit George Box und F. M. Jenkins. Zeitreihenanalyse: Prognose und Kontrolle. zweite Ausgabe. Oakland, CA: Holden-Day, 1976.de: ARMA-ModellA RIMA steht für Autoregressive Integrated Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosemethode, die die zukünftigen Werte einer Serie, die vollständig auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose mit mindestens 40 historischen Datenpunkten. Es funktioniert am besten, wenn Ihre Daten eine stabile oder konsistente Muster im Laufe der Zeit mit einem Minimum an Ausreißern zeigt. Manchmal nennt man Box-Jenkins (nach den ursprünglichen Autoren), ARIMA ist in der Regel überlegen exponentielle Glättung Techniken, wenn die Daten relativ lange und die Korrelation zwischen vergangenen Beobachtungen ist stabil. Wenn die Daten kurz oder stark flüchtig sind, kann eine gewisse Glättungsmethode besser ablaufen. Wenn Sie nicht über mindestens 38 Datenpunkte verfügen, sollten Sie eine andere Methode als ARIMA betrachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarität impliziert, dass die Reihe auf einem ziemlich konstanten Niveau über Zeit bleibt. Wenn ein Trend besteht, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen im Laufe der Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen der Saisonalität im Laufe der Zeit dramatischer. Ohne dass diese Stationaritätsbedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Die Differenzierung ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu transformieren. Dies geschieht durch Subtrahieren der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Transformation nur einmal zu einer Reihe erfolgt, sagen Sie, dass die Daten zuerst unterschieden wurden. Dieser Prozess im Wesentlichen eliminiert den Trend, wenn Ihre Serie wächst mit einer ziemlich konstanten Rate. Wenn es mit steigender Rate wächst, können Sie das gleiche Verfahren anwenden und die Daten erneut differenzieren. Ihre Daten würden dann zweite differenziert werden. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe mit der Zeit auf sich bezieht. Genauer gesagt misst es, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander über die Zeit miteinander korreliert werden. Die Anzahl der Perioden wird in der Regel als Verzögerung bezeichnet. Zum Beispiel misst eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten, die zwei Perioden voneinander entfernt sind, über die gesamte Reihe korreliert werden. Autokorrelationen können im Bereich von 1 bis -1 liegen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe -1 impliziert eine hohe negative Korrelation. Diese Maßnahmen werden meist durch grafische Darstellungen, sogenannte Korrelagramme, ausgewertet. Ein Korrelationsdiagramm zeigt die Autokorrelationswerte für eine gegebene Reihe bei unterschiedlichen Verzögerungen. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion der so genannten autoregressiven und gleitenden Durchschnittsparameter zu beschreiben. Diese werden als AR-Parameter (autoregessiv) und MA-Parameter (gleitende Mittelwerte) bezeichnet. Ein AR-Modell mit nur einem Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihen A (1) der autoregressive Parameter der Ordnung 1 X (t-1) (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der geschätzte Wert von A (1) 0,30 betrug, dann wäre der aktuelle Wert der Reihe mit 30 seines vorherigen Wertes 1 verknüpft. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Zum Beispiel ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2) zuzüglich eines Zufallsfehlers E (t). Unser Modell ist nun ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell wird als gleitendes Durchschnittsmodell bezeichnet. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept dahinter ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t stattfindet, nur auf die zufälligen Fehler, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstatt auf X (t-1), X T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Begriff kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Begriff B (1) wird als MA der Ordnung 1 bezeichnet. Das negative Vorzeichen vor dem Parameter wird nur für Konventionen verwendet und in der Regel ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem Zufallsfehler in der vorherigen Periode E (t-1) und mit dem aktuellen Fehlerterm E (t) zusammenhängt. Wie im Fall von autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf übergeordnete Strukturen mit unterschiedlichen Kombinationen und gleitenden mittleren Längen erweitert werden. Die ARIMA-Methodik erlaubt es auch, Modelle zu erstellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter zusammenführen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für eine kompliziertere Prognose-Tool macht, kann die Struktur tatsächlich simulieren die Serie besser und produzieren eine genauere Prognose. Pure Modelle implizieren, dass die Struktur nur aus AR oder MA-Parameter besteht - nicht beides. Die Modelle, die von diesem Ansatz entwickelt werden, werden in der Regel als ARIMA-Modelle bezeichnet, da sie eine Kombination aus autoregressiver (AR), Integration (I) verwenden, die sich auf den umgekehrten Prozess der Differenzierung bezieht, um die Prognose zu erzeugen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies ist die Reihenfolge der autoregressiven Komponenten (p), der Anzahl der differenzierenden Operatoren (d) und der höchsten Ordnung des gleitenden Mittelwerts. Beispielsweise bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer ersten gleitenden Durchschnittskomponente haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Auswahl der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation zu verwenden - i. e. Wie viele AR - und / oder MA-Parameter einzuschließen sind. Dies ist, was viel von Box-Jenkings 1976 dem Identifikationsprozeß gewidmet wurde. Es hing von der graphischen und numerischen Auswertung der Stichprobenautokorrelation und der partiellen Autokorrelationsfunktionen ab. Nun, für Ihre grundlegenden Modelle, ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Weise aussehen. Allerdings, wenn Sie gehen in der Komplexität, die Muster sind nicht so leicht zu erkennen. Um es schwieriger zu machen, stellen Ihre Daten nur eine Probe des zugrundeliegenden Prozesses dar. Das bedeutet, dass Stichprobenfehler (Ausreißer, Messfehler etc.) den theoretischen Identifikationsprozess verzerren können. Deshalb ist die traditionelle ARIMA-Modellierung eher eine Kunst als eine Wissenschaft.
No comments:
Post a Comment